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Abstract. The effects of the endothermic decomposition of an inhibitory species W to form a radical scavenger
on a laminar, pre-mixed flame supported by an exothermic second-order branching reaction are considered. This
work extends a previous study, where the effects of the radical scavenger S were ignored. Two cases are identified,
dependent on a parameter β measuring the relative rate of the decomposition of W . These are described by an
high-activation-energy asymptotic analysis and through numerical integration of the propagating-flame equations
for representative parameter values. For larger values of β the effect of the radical scavenger is to introduce a
critical value of the heat-loss parameter α for flame propagation. For smaller values of β, where there is a critical
value of α without any S being produced, the effect is to lower this critical value. In both cases the effect of
the radical scavenger is to reduce the propagation speed and, if sufficient amounts of S are produced from the
decomposition of W , to totally suppress flame propagation, even without any heat loss.
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1. Introduction

In a previous paper [1] we described a model for the propagation of a flame driven by an
exothermic reaction subject to endothermic chemical processes. These consisted of the en-
dothermic decomposition of an inhibitor species leading to the formation of a ‘radical scav-
enger’. This, in turn, acted as a catalyst for the removal of active radicals through an additional
termination step. It was shown in [1] that these endothermic processes could have significant
effects on flame propagation, producing considerable reductions in the flame speed and giving
the possibility of flame inhibition.

It is the purpose of this paper to examine this model in more detail. A simplified version
of the model, in which the decomposition of the inhibitor was the only endothermic process,
was considered in [2]. There the model consisted of a second-order, exothermic reaction for
the fuel and a first-order reaction for the inhibitor. In [2] it was seen that the high-activation-
energy limit provided clear insights into the nature of flame propagation or inhibition, as well
as giving a basic understanding of the structure of the flame. An alternative version of this
problem in which the reaction for the fuel was a first-order process has been considered in [3],
where again the high-activation-energy asymptotics provided a useful guide into the nature of
the flame propagation. A prototype version of the model considered in [2], where the Arrhe-
nius temperature dependence of the kinetics is replaced by a step-function behaviour, [4], has
also revealed that the endothermic decomposition of the inhibitor can have significant effects
on flame propagation. It is high-activation-energy asymptotics that we mostly concentrate on
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here, paying particular attention to the effect that the radical scavenger can have on flame
inhibition.

Our main aim here, through the analysis of a simple model, is to assess the contributions
made to flame inhibition by heat loss through some endothermic process – thermal effects, and
by the removal of the active radical – chemical effects. Both thermal and chemical effects have
been observed experimentally to have a strong influence on flame inhibition and quenching of
both premixed [5, 6] and counter-flow flames [7–9]. One motivation for the form of the heat-
loss term in our model is the vaporization of a water mist. This effect has a strong temperature
dependence, perhaps through some activation energy, and will depend on the local concen-
trations of the water mist (as in our model). However, this is clearly a gross simplification
of the physics of this phase-transition but our model may be useful, giving some qualitative
comparison with experimental data, or at least indicate the main mechanisms involved in flame
inhibition by this process. In this scenario, the chemical effects can be thought of as arising
from salts dissolved within the water mist. These have also been observed to have strong
quenching effects on flame propagation and our model may give some insights into how these
two processes, thermal and chemical effects, compete to inhibit flame propagation.

We start by describing our model and setting up the corresponding equations for the
propagating flame.

2. Model

Our kinetic scheme is based on the Zel’dovich-Liñan model, see [10–12] for example, in
which a reactant A and a radical intermediate X combine to form a set of inert products P

through the following sequence of initiation, branching and termination steps

A → X rate = ki(T ) a, (1)

A + X → 2X rate = kb(T ) a x, (2)

X + X → P rate = kt x
2, qt > 0, (3)

where a and x are the concentrations of species A and X respectively and T is (absolute)
temperature. The rate coefficients of the initiation and branching steps (1) and (2) have an
Arrhenius temperature dependence of the form

ki(T ) = ki,0 exp(−Ei/RT ), kb(T ) = kb,0 exp(−Eb/RT ).

Here Ei and Eb are the respective activation energies, R is the universal gas constant and
ki,0 and kb,0 are constants (pre-exponential factors). The termination step (3) is assumed to be
independent of temperature and to be an exothermic process with exothermicity qt .

Our extension to this basic scheme is the inclusion of a quenching effect through the
additional steps

W → rS rate = kw(T )w, qw < 0, (4)

S + X → S + Q rate = ks x s, (5)

where w and s are the concentrations of species W and S, respectively. Step (4) represents
the endothermic decomposition of an inhibitor species W to form the radical scavenger S
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(for r > 0) and is taken to have an Arrhenius temperature dependence with activation energy
Ew, i.e., kw(T ) = kw,0 exp(−Ew/RT ). The radical scavenger acts catalytically to remove
the radical X via step (5), which is assumed to be temperature independent and to have zero
exothermicity.

We can expect step (1) to be a relatively slow process in the flame context that will be
neglected in our model. Its role is just to seed some radical X locally into the the system to
enable the reaction to proceed. We make the usual assumption of constant pressure for slow-
speed laminar flames and take the physical parameters to be independent of temperature. This
leads to the following set of equations, written in terms of a travelling co-ordinate y moving
with the flame,

κT ′′ + c σCpT ′ + qtktx
2 + qwkw(T )w = 0, DAa′′ + c a′ − kb(T )a x = 0, (6)

DWw′′ + c w′ − kw(T )w = 0, DXx ′′ + c x ′ + kb(T )a x − 2ktx
2 − ksxs = 0,

where primes denote differentiation with respect to y. The concentrations of the chemical
inhibitor W and radical scavenger S, which is created directly from the decomposition of W ,
are related by the conservation law

s = r(w0 − w) (7)

In the above DA, DW and DX are the diffusion coefficients for species A, W and X, respect-
ively, κ is the thermal conductivity, Cp and σ are the specific heat at constant pressure and
the density (both assumed constant); c is the (constant) speed of propagation of the flame. We
assume that c > 0. Ahead of the flame the system is in its unreacted state with

a = a0, w = w0, T = Ta, x = 0, s = 0, (8)

where a0 and w0 are the (constant) concentrations of the fuel A and inhibitor W and Ta is the
ambient temperature.

Having Ta �= 0 ahead of the flame causes a problem, the so-called ‘cold boundary prob-
lem’, since, in the present context, reaction rate (4) is non-zero. Several approaches have
been suggested to remove this difficulty. One is to set Ta = 0. This is not a particularly
unrealistic thing to do as the temperatures that can be achieved within a flame are generally
very much higher than typical ambient temperatures and, at these ambient temperatures, the
Arrhenius functions give values that are usually very small. This is the approach we adopt
here. An alternative approach is to invoke an ‘ignition temperature’ Ti (say), Ti > Ta , taking
the temperature dependence, here kb(T ) and kw(T ), to be zero for temperatures T < Ti . This
approach has a drawback in that it introduces the additional and somewhat artificial parameter
Ti . The results obtained from these two approaches have been shown to agree in the limit as
Ti → 0 [13].

We wish to exploit high-activation-energy asymptotics. This leads us to introduce the di-
mensionless variables, following an initial development of this idea in [14] and used in [2,
3],

T = Tref u, a = a0(1 − v), w = w0(1 − w), x = x

(
kb,0a0e−1/2ε

2kt

)
, (9)

where (with Ta = 0) the reference temperature Tref is defined as Tref = qta0

2σCp

and ε =
RTref
2Eb

is our activation energy parameter. If we apply (9) in Equations (6, 7) we obtain the
dimensionless equations for our model as
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u′′ + c u′ + x2 − α(1 − w) exp

(
−µ(1 − u)

εu

)
= 0, (10)

1

LA

v′′ + c v′ + (1 − v) x exp

(
−(1 − u)

2εu

)
= 0, (11)

1

LW

w′′ + c w′ + β(1 − w) exp

(
−µ(1 − u)

εu

)
= 0, (12)

δ

(
1

LX

x′′ + c x′
)

+ x (1 − v) exp

(
−(1 − u)

2εu

)
− x2 − ρx w = 0. (13)

The dimensionless travelling co-ordinate y and flame speed c are given by

y = y

(
σCpa0k

2
b,0

2κkte1/ε

)1/2

, c = c

(
2σCpkte1/ε

κa0k
2
b,0

)1/2

. (14)

Here LA, LW and LX are the Lewis numbers associated with species A, W and, X, respect-
ively, viz.

LA = κ

σCpDA

, LW = κ

σCpDW

, LX = κ

σCpDX

The other dimensionless (kinetic) parameters are given by

α = 4(−qw)kw,0ktw0e(1−µ)/ε

qt k
2
b,0a

2
0

, β = 2kw,0kte(1−µ)/ε

k2
b,0a0

, δ = kb,0 e−1/2ε

2kt

,

µ = Ew

2Eb

, ρ = rksw0e1/2ε

kb,0a0
.

The parameter α is a measure of the quenching effect of the endothermic reaction (4) relative
to the heat released from reaction (3), β measures the consumption of the inhibitor W relative
to the consumption of the fuel A, µ is effectively the ratio of the activation energies of the
temperature dependent reactions and ρ can be regarded as a dimensionless version of the
stoichiometry factor r.

The parameter δ measures the rate of the branching reaction (2) relative to the exothermic
termination step (3) and, in the present flame context, will be a small parameter. This enables
us to simplify our model slightly by putting the terms in Equation (13) involving δ to zero.
Thus our model consists of Equations (10–12) together with the algebraic relation

x

(
(1 − v) exp

(
−(1 − u)

2εu

)
− x − ρ w

)
= 0,

giving

x =
{

(1 − v) exp
(
− (1−u)

2εu

)
− ρ w, if x > 0

0, if x ≤ 0
. (15)

Ahead of the flame we have
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u → 0, v → 0, w → 0, x → 0 as y → ∞. (16)

If ρ = 0, the model (given by Equations (10–12, 16) with x replaced by (15)) simplifies
and it is this reduced version of the model that was discussed in [2]. We were then able to
combine Equations (10–12) to eliminate the reaction terms [2]. The resulting equation could
be integrated and, with boundary conditions (16) applied, gave necessary conditions for front
or pulse waves in the temperature. The existence of these two types of wave was confirmed
through numerical simulation and through the high-activation-energy asymptotics. Here we
are concerned with the situation when ρ �= 0, i.e., when there is an additional quenching effect
from the catalytic removal of X by S. In this case we are unable to combine the equations to
eliminate the reaction terms and so we cannot derive simple conditions for the formation of
front or pulse waves. The most we can say at this stage is that, at the rear of the wave where
the reactions are fully completed, we must have x = 0 and that pulse (where u → 0) or front
(where u → us > 0) waves are not precluded.

As a check on the simplification made in (15) we performed numerical simulations of
the full system (10–13) with δ �= 0 for representative parameter values to compare with
results obtained using (15). We found that taking δ less than about 10−3 was sufficient to give
agreement between the two sets of results, at least to graphical accuracy. Further, no additional
problems were encountered in the simulations using (15). This suggests that our reduction of
the system using (15) is a reasonable approximation provided δ is small.

3. High-activation-energy asymptotics, ε � 1

In [2] we identified two different cases depending on the relative sizes of the parameters α and
β.
(i) when α ∼ β, flame inhibition occurred at a critical value αcrit of α through a saddle-node

bifurcation. This behaviour is reminiscent of the way flames are extinguished with heat
loss by cooling; see [14, 15] for example;

(ii) when α � β, there is no critical value for α, though the flame speed can be reduced
considerably as α is increased (for a given value of β).

We examine these two cases for the present model, starting with the case when α � β.
For simplicity of exposition we assume unit Lewis numbers, i.e., we take LA = LW = 1. We
expect our results to hold qualitatively for general Lewis numbers provided they are of O(1).

3.1. α � β

In this case the flame has a two-layer structure. There is a thin reaction zone and a thicker
preheat zone. To get a consistent matching between the two regions we have to scale α, β, ρ

and the wave speed c by, following [2],

α = ε2 α, β = ε β, ρ = ε2 ρ, c = ε3/2 c (17)

where α, β, ρ, c are of O(1) for ε small. We start in the preheat zone (region I).

3.1.1. Preheat zone (Region I)
Here the reaction terms are negligible (exponentially small). Thus, from (15), x ≡ 0. We scale
y by

y = y ε3/2 (18)
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and leave u, v, w unscaled. We apply (17,18) in Equations (10–12) and look for a solution by
expanding in powers of ε with

c = c0 + ε c1 + · · · . (19)

The details are straightforward and we obtain the solution ahead of the flame:

u = e−c0y + ε
(
(T1 − c1 y) e−c0y

) + · · · , v = e−c0y + ε(−c1 y e−c0y) + · · · ,

w = e−c0y + ε
(
(S1 − c1 y) e−c0y

) + · · · ,
(20)

where T1 and S1 are constants to be determined; see [2] for further details. The solutions
have been chosen to satisfy boundary conditions (16) and for the leading-order terms to be of
O(1) for y small. This anticipates the matching with the reaction zone, which is what we now
consider.

3.1.2. Reaction zone (Region II)
Here we put

u = 1 − εU, v = 1 − εV, w = 1 − εW, x = εX, ζ = y ε1/2 = y/ε, (21)

so that this region is thin, of thickness O(ε) compared to the preheat zone. We apply (21) in
Equations (10–12, 15) and look for a solution by expanding

U = U0+ε U1+· · · , V = V0+ε V1+· · · , W = W0+ε W1+· · · , X = X0+ε X1+· · · .

(22)

Then X0 = V0 e−U0/2 and the equations for U0 and V0 become

U ′′
0 − V 2

0 e−U0 = 0, V ′′
0 − V 2

0 e−U0 = 0, (23)

subject to matching with region I, namely

U0 ∼ c0ζ − T1 + · · · , V0 ∼ c0ζ as ζ → ∞. (24)

Eliminating the reaction terms from Equations (23), integrating and applying the matching
conditions (24), we have

U0 = V0 − T1. (25)

Then substituting (25) in (23) we have, on integrating and applying (24),

U ′2
0 = c2

0 − 2
(
(U0 + T1)

2 + 2(U0 + T1) + 2
)

e−U0 . (26)

As ζ → −∞, V0 → 0 (all the fuel is used up in the reaction zone). Hence U0 → −T1 and
equation (26) gives

c2
0 = 4 eT1 . (27)

The equation for W0 is

W ′′
0 − β W0 e−µU0 = 0, W0 ∼ c0ζ − S1 as ζ → ∞. (28)

This is a linear equation for W0 with U0 effectively given by (26). The solution must have
W0 → 0 as ζ → −∞ (with W0 ∼ exp(

√
βeµT1ζ ) for |ζ | large).

At O(ε) we obtain
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X1 =
(

V1 − V0(U
2
0 + U1)

2

)
e−U0/2 − ρ (29)

and then

U ′′
1 + c0U

′
0 − e−U0

(
2V0V1 − V 2

0 (U 2
0 + U1)

) + 2ρV0e−U0/2 + αW0e−µU0 = 0, (30)

V ′′
1 + c0V

′
0 − e−U0

(
2V0V1 − V 2

0 (U 2
0 + U1)

) + ρV0e−U0/2 = 0, (31)

subject to matching with region I which requires

U1 ∼ −c2
0

2
ζ 2 + (c0T1 + c1)ζ + T2 + · · · , V1 ∼ −c2

0

2
ζ 2 + c1ζ + · · · , (32)

as ζ → ∞.
Eliminating the terms in e−U0 from Equations (30, 31) and using Equation (28) for W0, we

arrive at an equation that can be integrated once to give, on applying conditions (24, 32),

U ′
1 + c0U0 − (V ′

1 + c0V0) + α

β
W ′

0 − ρ

∫ ∞

ζ

(U0 + T1)e
−U0/2 dζ = αc0

β
. (33)

As ζ → −∞, U ′
1 → 0 so that Equation (33) gives

T1 = − ρ

c0

∫ ∞

−∞
(U0 + T1)e

−U0/2 dζ − α

β
. (34)

We can use expressions (26, 27) in the integral to get

I1 ≡
∫ ∞

−∞
(U0 + T1)e

−U0/2 dζ =
∫ ∞

0

se−s/2 ds√
4 − 2(s2 + 2s + 2)e−s

= 4·9283 (35)

on evaluating the integral numerically.
Equation (34) reduces to the equation found previously for ρ = 0, [2]. Applying (34) in

Equation (27) we obtain

c2
0 = 4 exp

(
−α

β
− ρI1

c0

)
. (36)

We can re-write this to give α/β in terms of c0 as

α

β
= 2(log 2 − log c0) − ρI1

c0
. (37)

Equation (37) shows that α/β is negative for sufficiently small or large values of c0 and has a
local turning point (maximum) where

c0 = ρI1

2
,

α

β
=

(
α

β

)
crit

= 2(2 log 2 − 1 − log(ρI1)). (38)

Equation (38) shows that, to have
(
α/β

)
crit ≥ 0, we must have ρ ≤ 4e−1/I1 = 0·2986. A

typical graph of c0 against α/β for ρ > 0 is sketched in Figure 1a. Note that these curves lie
below the curve corresponding to ρ = 0 (shown by the broken line).
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Figure 1. Plots of the wave speed c0 against (a) α/β (the case for ρ = 0 is shown by the broken line) and (b) ρ,
obtained from Equation (36).

Figure 1a shows that the effect of the radical scavenger S is to make a qualitative change in
the relationship between c0 and α/β. Without this species, ρ = 0, and there is no inhibition,
though the wave speed decreases with increasing values of α/β, [2]. Adding this reaction step
to the overall process leads to inhibition at a finite value of α/β (through a saddle-node bi-
furcation) and, if this step is sufficiently strong (ρ > 4e−1/I1), the system is totally quenched.
Flames cannot form, even if there is no heat loss from the endothermic decomposition of W ,
i.e., α = 0.

An alternative way of viewing Equation (36) is to express ρ in terms of c0 for a given α/β,
namely

ρ = c0

I1

(
2(log 2 − log c0) − α

β

)
. (39)

Expression (39) shows that ρ = 0 at c0 = 0 (with ρ > 0 for small c0), ρ = 0 at c0 = 2 e−α/2β

and that ρ is large and negative for c0 large. It has a local turning point (maximum) at

c0 = 2 exp(−1 − α

2β
), ρ = ρcrit = 4

I1
exp(−1 − α

2β
). (40)

A graph of c0 against ρ is shown in Figure 1b. This figure shows that we must have ρ < ρcrit
for flame initiation and emphasises that this additional effect in the kinetic scheme can totally
suppress flame propagation.

3.2. α ∼ β � 1

We now consider the case when α ∼ β � 1. To follow the treatment described in [2] we need
α and β to be of O(ε4) and µ and ρ to be of O(ε). We scale c as in (17) and

α = ε4α̃, β = ε4β̃, µ = εν, ρ = ερ̃, (41)

where α̃, β̃, ν and ρ̃ are all of O(1). In this case we require three regions, regions I and II
(preheat and reaction zones) as before, but now there is an additional region III (decay zone)
in which the conditions at the rear of the flame are attained.

3.2.1. Preheat zone (region I)
We again start in the preheat zone with the scaling for y given by (18) but now we take w to be
of O(ε). In this region the exothermic reaction terms are negligible, though there is a (weak)
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endothermic reaction since µ is O(ε). Hence, in this region x ≡ 0, from (15). The solution is
obtained by expanding in powers of ε and, following [2] and taking LA = LW = 1, is

u = e−c0y + ε

(
(T1 − c1y)e−c0y + α̃

νc0

∫ ∞

y

e−c0s exp
[
ν(1 − ec0s)

]
ds

)
+ · · · ,

v = e−c0y + ε (−c1ye−c0y) + · · · ,

w = ε

(
S1e−c0y − β̃

νc0

∫ ∞

y

e−c0s exp
[
ν(1 − ec0s)

]
ds

)
+ · · · ,

(42)

where S1 and T1 are constants to be found.

3.2.2. Reaction zone (region II)
We now turn to the reaction zone, where the scalings are given by (21), though now we put
w = W̃ . The equations are

X = V exp

[
− U

2(1 − εU)

]
− ερ̃W̃ ,

U ′′ + ε c U ′ − X2 + ε2α̃(1 − εW̃ ) exp

[
− ενU

(1 − εU)

]
= 0,

V ′′ + ε c V ′ − XV exp

[
− U

2(1 − εU)

]
= 0,

W̃ ′′ + ε c W̃ ′ + ε2β̃(1 − εW̃ ) exp

[
− ενU

(1 − εU)

]
= 0,

(43)

where primes denote differentiation with respect to ζ . We look for a solution by expanding in
powers of ε, as in (22). The leading-order problem gives

X0 = V0e−U0/2, W̃0 = S1 − β̃Jν

νc2
0

(44)

on matching with (42), where

Jν = c0

∫ ∞

0
e−c0y exp

[
ν(1 − ec0y)

]
ds =

∫ ∞

0

e−νx

(1 + x)2
dx (45)

together with Equations (23). Matching with region I now gives

U0 = V0 −
(

T1 + α̃Jν

νc2
0

)
, (46)

where Jν is defined by (45). Taking V0 → 0 as ζ → −∞ we have

U0 → −
(

T1 + α̃Jν

νc2
0

)
as ζ → −∞. (47)

The equation equivalent to (26) is now

U ′2
0 = c2

0 − 2

(
(U0 + T1 + α̃Jν

νc2
0

)2 + 2(U0 + T1 + α̃Jν

νc2
0

) + 2

)
e−U0 . (48)
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Applying condition (47) in (48) now we obtain

c2
0 = 4 exp

(
T1 + α̃Jν

νc2
0

)
. (49)

At O(ε) we obtain

W̃1 = −
(

S1c0 − β̃

νc0

)
ζ (50)

from Equation (43d). Equation (43a) gives

X1 = e−U0/2

(
V1 − V0

2
(U1 + U 2

0 )

)
− ρ̃W̃0. (51)

We can eliminate the reaction terms from the O(ε) equations derived from (43b,c) (as in
Equations (30, 31, 33)) and then, using (44), integrating and matching with (42) we obtain
that

U ′
1 = V ′

1 +
(

c0T1 + α̃

νc0

)
+ ρ̃

(
S1 − β̃Jν

νc2
0

)∫ ∞

ζ

(
U0 + T1 + α̃Jν

νc2
0

)
e−U0/2 dζ (52)

We now let ζ → −∞ in (52). With V ′
1 → 0, this gives

U1 ∼
[
c0T1 + α̃

νc0
+ ρ̃I1

(
S1 − β̃Jν

νc2
0

)]
ζ + · · · as ζ → −∞, (53)

where I1 is given by (35).

3.2.3. Decay region (region III)
The behaviour of u and w, as given by (44, 47, 50, 53), suggests that we need a further region
(region III – decay region) in which v ≡ 1 (all fuel consumed). Since v ≡ 1 in region II,
x ≡ 0, from (15) and the details for this region are essentially the same as those given in
[2]. There are two subregions, region IIIa in which Y = ε3/2 y = ε ζ with the corresponding
solution

u = 1 + ε

(
α̃

c0
Y + (T1 + α̃Jν

νc2
0

)

)
+ · · · , w = ε

(
− β̃

c0
Y + (S1 − β̃Jν

νc2
0

)

)
+ · · · . (54)

Matching with (44, 47, 50, 53) then gives

S1 = β̃(ν + 1)

νc2
0

, T1 = −
(

α̃(ν + 1)

νc2
0

+ ρ̃β̃I1(1 + ν − Jν)

νc3
0

)
(55)

The expression for T1 in (55) is the same as that given in [2] when ρ̃ = 0.
In region IIIb we put ξ = ε5/3 y = εY , obtaining the leading-order problem

c0u
′ − α̃(1 − w) exp[−ν(1 − u)/u] = 0, c0w

′ + β̃(1 − w) exp[−ν(1 − u)/u] = 0, (56)

where primes now denote differentiation with respect to ξ , subject to

u ∼ 1 + α̃

c0
ξ + · · · , w ∼ − β̃

c0
ξ + · · · , as ξ → 0− (57)
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on matching with region IIIa. Combining equations (56), integrating and applying (57) we
obtain

β̃u + α̃w = β̃ (58)

and then

c0u
′ − (α̃ − β̃ + β̃u) exp[−ν(1 − u)/u] = 0, (59)

subject to (57). As in [2], Equation (59) shows that we can have front waves if α̃ < β̃, with
u → 1 − α̃/β̃, w → 1 as ζ → −∞, or pulse waves if α̃ > β̃, with u → 0, w → β̃/α̃ as
ζ → −∞.

We now return to the expression for the wave speed c0 obtained from expressions (49) and
(55).

3.2.4. Wave speed
Application of (55) in (49) gives

c2
0 = 4 exp

(
−(

ν + 1 − Jν

ν
)(

α̃

c2
0

+ ρ̃β̃I1

c3
0

)

)
. (60)

We can express Equation (60) as

α̃ = 2ν

(ν + 1 − Jν)
c2

0(log 2 − log c0) − ρ̃β̃I1

c0
(61)

Note that Jν < 1 for ν > 0, hence expression 2ν
ν+1−Jν

is positive for all ν > 0. Equation (61)
shows that α̃ is large and negative for both small and large values of c0 and has a turning point
where

c3
0(2 log c0 + 1 − 2 log 2) = (ν + 1 − Jν)ρ̃β̃I1

2ν
. (62)

The left-hand side of Equation (62) is negative for c0 < 2e−1/2 and positive and monotone
increasing for c0 > 2e−1/2. Since the right-hand side is positive (for ν > 0), there is only one
turning point for Equation (61) for c0 > 0 which must occur at a value of c0 > 2e−1/2. Thus
a necessary condition for α̃ ≥ 0 at the turning point is that ρ̃ < 8νe−3/2

(ν+1−Jν)β̃I1
. A sketch of the

c0 – α̃ curve for this case is shown in Figure 2a. Also shown in Figure 2a is the corresponding
curve for ρ̃ = 0 (by the broken line). The figure shows that the values of c0 for a given value
of α̃ are reduced from those when ρ̃ = 0 and that the critical value of α̃ is less when ρ̃ �= 0.
Thus the effect of the radical scavenger is to reduce the range over which flames can form and,
if the effect is sufficiently strong, to totally quench the system.

Alternatively, we can express Equation (60) in terms of ρ̃ as

ρ̃ = 1

β̃I1

(
2ν

ν + 1 − Jν

c3
0(log 2 − log c0) − α̃c0

)
. (63)

Equation (63) has ρ̃ = 0 at c0 = 0 with ρ̃ < 0 for small and large c0, with, when α̃ > 0,
two zeros on c0 > 0. A graph of ρ̃ against c0 is sketched in Figure 2b. The graph for the case
when α̃ = 0 is similar to that shown in Figure 2b, though now the curve crosses the c0-axis
only once and on the lower branch c0 → 0+ as ρ̃ → 0. Both these graphs shows that there
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Figure 2. Plots of the wave speed c0 against (a) α̃ for a given ρ̃, the curve for ρ̃ = 0 is shown by the broken line,
(b) ρ̃ for a given α̃ for α̃ > 0, obtained from Equation (60).

Figure 3. Plots of the wave speed c against (a) α for given values of ρ, (from ρ = 0 to ρ = 0·0024) (b) ρ for
given values of α, (from α = 0 to α = 0·0211) with ε = 0·1, β = 0·1 representative of the high activation energy
asymptotics for α � β (see Section 3.1). LA = LW = 1·0, µ = 0·5.

is a critical value for ρ̃ for wave formation and emphasise the quenching effect of the radical
scavenger.

4. Numerical solutions

We solved the propagating flame Equations (10–12, 15, 16) numerically with a small value
of ε, taking ε = 0·1, for parameter values representative of the two cases treated by high-
activation-energy asymptotics. For the first case, α � β, β of O(ε), we took β = 0·1 and for
the second case, α ∼ β ∼ ε4, we took β = 10−4. Our results are presented as plots of the
wave speed c against α, for fixed values of ρ and plots against ρ for fixed values of α. In both
cases we considered only unit Lewis numbers, LA = LW = 1, in line with the theoretical
description and took µ = 0.5.

The results for β = 0·1 are shown in Figure 3. The plots of c against α shown in Figure 3a
have the same general features as the sketch in Figure 1a obtained from the high-activation-
energy asymptotics. They both show the same qualitative difference between the the cases
ρ = 0 (no inhibition though a reducing propagation velocity as α increases) and ρ > 0,
where there is a critical value αcrit for α for flame propagation. The figure also shows that
there is a bound on ρ to have flames even in the ‘adiabatic’ (α = 0) limit. For the parameters
used for Figure 3a this value is ρ = 0·0025, which compares reasonably well with the value
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Figure 4. Plots of the wave speed c against (a) α for given values of ρ (from ρ = 0 to ρ = 0·0283), (b) ρ for given
values of α, (from α = 0 to α = 1·587 × 10−4) with ε = 0·1, β = 10−4 representative of the high activation
energy asymptotics for α ∼ β (see Section 3.2). LA = LW = 1·0, µ = 0·5.

of ρ = 0·0030 obtained from the high-activation-energy asymptotics. In Figure 3b we give
plots of c against ρ for increasing values of α (the case α = 0 is labelled). These curves
have the same qualitative form as that sketched in Figure 1b and decrease in extent as α is
increased to αcrit. This figure shows more clearly the existence of a critical value for ρ for
flame propagation in the α = 0 limit.

Figure 4 gives plots for β = 10−4. Both figures again have the same qualitative shapes as
those sketched in Figures 2a and 2b, the parts of the curve for ρ < 0 in Figure 2b are not shown
in Figure 4b. Here there is a critical value of α for wave propagation in the ρ = 0 limit and
this value decreases, with the corresponding wave speeds also decreasing, as ρ is increased.
As predicted by the high-activation-energy asymptotics there is total flame quenching for a
sufficiently large value of ρ. This value was found to be ρ = 0·0286 for the parameters used
for Figure 4a. This compares reasonably well with the value of ρ = 0·024 obtained from the
high-activation-energy asymptotics. Figure 4b again shows flame inhibition for a critical value
of ρ, even in the α = 0 limit.

5. Conclusions

The main conclusion from our study is that the radical scavenger can have a strong additional
inhibitory effect on flame propagation. There are two processes in our model that have a decel-
erating effect on the exothermic combustion reactions, namely the endothermic decomposition
of an inhibitory species W and the removal of the active radical X by a scavenger species S.
Both processes reduce the flame propagation speed, sometimes quite considerably, and can
inhibit flame propagation altogether.

We identified two distinct cases, namely relatively fast and relatively slow decomposition
of W , through the parameter β changing by a few orders of magnitude. In the first case, the
decomposition of W alone does not inhibit flame propagation, its effect is only to slow down
the propagation speed as the ‘heat loss’ parameter α is increased. The effect of the radical
scavenger is to make a qualitative change in this behaviour, now there is a critical value αcrit

of α for possible flame propagation. In the latter case there is a critical αcrit even with no
radical scavenger (ρ = 0) for flame propagation. The effect of the radical scavenger does
not change this but does decrease the value of αcrit. In both cases flame propagation can be
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totally suppressed by a sufficiently large production of S from the decomposition of W through
reaction (4).

Our high-activation-energy asymptotics allows us to assess the effect of the radical scav-
enger S on the flame. The active radical X is produced within the reaction zone by the
branching step (2) and its recombination via step (3) produces the heat necessary to sustain
the flame. The main effect of the inhibitor W is to reduce the temperature within the reaction
zone (in the asymptotic solution to decrease the constant T1 from its adiabatic value of zero).
If the consumption of W within the preheat zone is sufficiently large (higher values of β), then
the relatively small amount of W left to react within the reaction zone is unable on its own
to remove sufficient heat to inhibit the flame. If less W is consumed within the preheat zone
(smaller values of β), this is not the case and there can be enough W left in the reaction zone
to allow decomposition reaction (4) to remove sufficient heat for flame extinction.

This method of flame extinction, the thermal effect, is an interaction between the heat loss
in the reaction zone and the consumption of the inhibitor W in the preheat zone and thus occurs
over the full extent of the flame. The effect of the radical scavenger, the chemical effect, is
more local and is seen only within the reaction zone. Its main effect on flame extinction is to
reduce the the temperature within the reaction zone (see Equations (34) and (35)) by reducing
the concentration of X within the reaction zone. Thus the effect of the radical scavenger is
more critical on flame inhibition than the endothermic heat loss as it acts on the central core
of the flame. Small reductions in the concentration of X in the reaction zone can lead to
considerable reductions in temperature with the consequently very much reduced rates for the
exothermic combustion reactions.

These effects were brought out from our high-activation-asymptotic energy analysis, and
confirmed by numerical integrations for some representative cases. This shows clearly the
usefulness of this approach. Here we extended results derived previously [2] to include the
effects of the radical scavenger. For the small β case (Section 3.2) we took µ, the ratio of
the activation energies, to be small so as to follow the results given in [2]. In a subsequent
study with a first-order combustion reaction [3] we have been able to remove this restriction.
With µ of O(1) the regions where the combustion and decomposition reactions take place
separate out within the flame in the small ε limit. A consideration of the ‘small β’ case for
this reaction with µ of O(1) has shown the existence of further solution branches, with up to
three flame solutions for a given value of β. This high-activation-energy analysis is applicable
to the second-order reaction model considered here and in [2], with the obvious extension to
include the radical scavenger.

Previous studies, using a different theoretical approach to model the chemical effect [18,
19], report bifurcation diagrams that are qualitatively similar to those derived here and given
in [3, 16]. This work also shows that the chemical effect can have a strong influence on flame
propagation (reducing the flame speed), lead to (further) multiple solution branches and induce
flame inhibition. Experimental observations by Mitani [20] show considerable reductions in
flame speeds and flame quenching when powders, NaHCO3, and gaseous retardants, CF3Br,
are added to the fuel. Further experimental evidence is provided by counter-flow flames [7,
9] which show that pure-water mist reduces the extinction limit for stable flames and that, by
adding NaCl to the water mist, reduces this extinction limit even further.

Our results have been confined to unit Lewis numbers. The effect of having different Lewis
numbers has been considered for the first-order reaction model [16], where it was seen that the
nature of the flame solutions was not qualitatively changed. However, having non-unit Lewis
numbers did change the stability of the flames, with Hopf bifurcations occurring leading to
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oscillatory propagation. Similar behaviour is seen in the second-order combustion reaction
model, both in the existence of flame solutions and in their stability, though the additional
effect of the radical scavenger could make significant differences to the stability of these
flames. This is, at present, under consideration [17] and will be reported on later.
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